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1. OVERVIEW AND SUMMARY

\I.I Scope of this Report

This document reports the research activities and results for the period 16
October 1982 - 15 April 1982 under the Defense Advanced Research Project
Agency (ARPA) Submicron Systems Architecture Project.

1.2 Objectives

The central theme of this research is the architecture and design of VLSI
systems appropriate to a microcircuit technology scaled to submicron feature
sizes, and includes related efforts in concurrent computation and VLSI
design. The scope of the research is discussed in greater detail in our
previous technical report [5052:TR:82].

-A
1.3 Highlights

The highlights of the previous 6 months are:

(1) The design of a tree machine processor, called "mosaic," was completed
and verified in November and December 82. This 16-bit processor is only

1<: 1440 by 1436 lambda, or 2 million square lambda (MSL) in size, including 4
bidirectional communication channels. The design Was sent to MOSIS for

*fabrication on 6 January 83, and returned from fabrication 34 days later.
The chips returned were tested immediately, and execute code correctly. The
maximum clock rate, which is also the storage cycle time, is 7. 0 MHz, very
good performance for the technology used, and achieved in part through using
a "hot clock" discipline with clock-and bootstrap drivers. Continued
testing revealed a very simply fixed microcode bug, and the design appears
to be almost ready for production in larger quantities.

(2) A new and simplified software system for the cosmic cube homogeneous
machine has been developed. The intermediate host has been redesigned, the
6-cube construction is virtually complete, and this 64 processor machine is
being tested. Routine operation of the full system is expected within the
next month.

(3) A fifo buffered one-to-one communication chip for future experimental
homogeneous machines was tested in March 83 and found to work correctly at a
6 MHz clock rate. The first iteration of this design tested in December 82

.~* was only partially functional due to a ratio error.
N,

(4) A new proof rule for procedures has been discovered that is much more
general and easy to use than existing ones.

A self-timed N-servers mutual exclusion circuit has been design using a
systematic method to derive circuits from programs.
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2. ARCHITECTURAL EXPERIMENTS

2.1 Overview

We have four architectural experiments in various phases of design and
construction. They are all ensembles of identical, concurrently operating,
and regularly interconnected elements that communicate by message passing.
Our priority in these efforts has been to apply VLSI technology to achieve
substantial advances in cost/performance in a limited set of computationally
demanding tasks. Generally the prototypes will exhibit a performance that
for a limited set of problems scales linearly with the number of elements,
or cost, and so are benchmarked in terms of cost/performance. These experi-
mental machines differ in the size (complexity) of the repeated element,
interconnection plan, MIMD vs SIMD, and their application span. The
complexity of the elements is most readily expressed in million square
lambda units.

These experiments, the machine organizations, their current status, and
application span, can be summarized as follows:

(1) Cosmic-cube is a homogeneous machine with elements interconnected in a
Boolean n-cube. Cosmic elements are of medium size for this class of
machine, about 140 MSL, and consist of an Intel 8086 processor with 8087
floating point coprocessor, 128K bytes of primary storage, and 6
bidirectional self-timed communication channels. At 140 MSL, and 78 "off
the shelf" chips, the nodes of this machine are something of a "hardware
simulation" of the kind of node that could be made as a single chip with 1
micron NOS technology, but even this prototype produces very good perform-
ance and about a factor of 10 advance in cost/performance over most
mainframes. A 2-cube prototype has been running concurrent programs since
July 1982, and has been used for program development. Construction of a
6-cube machine is nearly complete, and the machine is being tested in
stages. This machine appears to be very cost effective for a variety of
regular matrix, grid point, and n-body problems, as well as for less regular
computations such as SPICE simulation.

(2) Mosaic-mesh is a homogeneous machine with elements interconnected in a
two-dimensional mesh. Mosaic elements are small for this class of machine,
and consist of a mosaic processor (2 MSL) with as much primary storage as a
single chip permits. For example, a 6 MM square chip in 3 micron nMOS
technology, 16 MSL, will accommodate a mosaic processor, bootstrap ROM, and
4K bytes of dynamic RAM. The mosaic processor element is designed and
tested, RAM test chips have been fabricated, and a full-size RAM element is
being designed. This project involves a number of supporting efforts in
testing to allow production of these chips in quantities of several
thousands. This system is capable of and offers a factor of about 5 in
cost/performance over some of the most regular computations that can be
performed on cosmic cube, and that do not require large amounts of storage
per node.

(3) Mosaic-tree could be regarded as a homogeneous machine with very small,
indeed, marginally small elements, interconnected as a binary tree. It also
employs the mosaic processor (2 MSL) with a small amount of primary storage.
An area equal to that of the processor devoted to storage allows about 0.5K
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bytes of primary storage, and the total node complexity of 4 MSL allows 4
nodes per chip. A prototype mosaic tree with mosaic processors connected to
8K bytes of off-chip RAM will be operating later this spring, shortly after
the next batch of mosaic chips arrives from MOSIS. The logistics of
possibly building a useful size prototype of this system are closely tied to
mosaic-mesh. As previously reported, even with this small amount of storage
and the tree interconnection, a 1000 chip mosiac-tree would be capable of
performing an interesting variety of numerical and graph computations with
very high performance.

(4) Super-mesh is an SIMD machine in the early stages of design. Its
elements are expected to be quite small, about 1 MSL, containing only
registers, serial floating point arithmetic, and neighbor communication. An
instruction cycle of this machine requires several more clock cycles than
its mantissa word length, and a microcode control word is transmitted
serially for each instruction cycle. The physical design of this machine
employs a deliberate skew in the internode communication and instruction
broadcast to allow it to be extended to any size, but its interconnection is
limited to a mesh. This machine might be regarded as a very efficient
implementation of a computational or systolic array, with the advantage that
the system is programmable for a variety of applications. A study of
applications has revealed a number of limitations in this model that
suggests that a useful machine will have to have either a large amount of
storage per node or a very high bandwidth access mechanism to a secondary
storage system.

2.2 Cosmic Cube

2.2.1 Hardware

William C Athas, Pete Hunter, Chuck Seitz

Design and prototyping efforts for this project were reported in our
previous semiannual technical report. Hardware efforts for the Cosmic Cube
have centered in the past 6 months on logistics for assembling and testing
the 6-cube (64 processor) machine.

PC boards for the processors were delivered in February, and almost all of
the integrated circuit and packaging parts have been delivered in the
January to March period. The processor boards have been populated with
sockets and components at the rate of two boards per day, and are now almost
all assembled. These boards are being tested in a test fixture consisting
of a cosmic cube Intermediate Host (IH) and a degenerate cube.

The intermediate host has been redesigned and simplified to a standard El
86/12A multibus system with a single wire-wrapped Cube Life Support (CLS) El
board. CLS is the umbilical cord for Cosmic Cube, providing clocks, RAM
refresh interrupts and FIFO message ports from CLS to the Cosmic Cube Corner I

Processor (CCCP).

Wire-wrapping of the backplane for the Cosmic Cube was started 2 weeks ago odes

and is about half completed. r --

SI special
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2.2.2 Software

William C Athas, Michael 0 Newton, Chuck Seitz

All the low-level, or machine intrinsic level, software for the CosLC cube
has been redesigned and simplified, while also increasing its generality.
These improvements were motivated by the impromtu character of the first try
at this software, and upon two assumptions. First of all, we expect the
cosmic cube to be followed by machines in the next several years that have
different numbers and kinds of elements, and want to make as much of our
software portable to new machines as possible. Secondly, it it clear that
the cosmic cube will be able to support many different programming environ-
ments. The earlier software tried to put too much operating system in
read-only storage, only to encourage users to bypass it. So, the machine
intrinsic (R/O storage) part is now stripped to the bare essentials -

initialization and boot loading.

An initialization protocol has been defined for making the cosmic cube
presentable to the user after a hardware reset. Initialization starts
execution of code in firmware to initialize message ports and poll for
incoming messages. An initialization packet from the IH is diffused through
the cosmic cube starting at the corner processor. This packet contains
information regarding the logical size of the cube, size of the FIFO queues,
software version, and size of subsequent packets. After this initialization
each processor knows where it resides in the cube with respect to the corner
processor and now executes a small boot loader also in firmware. The boot
loader ordinarily loads into RAM a more elaborate loader provided by the
user. At this point further configuration is done only by the user at his
or her discretion and risk. We believe this scheme to be completely
flexible, and it is compatible with the retargetable C Compiler and Unix
derivative systems developed by High Energy Physics.

Work has also started on simplifying user interfaces to the cosmic cube. We

plan to retain the Intermediate Host (IH) based on the Intel 86/12A multibus
system, expanding it as necessary to provide interfaces to networks and to
other computers. We are in the process of replacing the initial large
firmware monitor of the IH with a small intialization and bootstrap loader
that provides only rudimentary hardware debug facilities. The user can
define his or her own run time interface to the cosmic cube corner
processor, if desired. The new monitor for the IH is written in C, and it

is intended to be easy to port useful code such as network protocols to the
IH.

Meanwhile, work is continuing on developing a simple multiprogramming
operating system to run in the cube. We have also recently been doing some
experiments in using IBM Personal Computers for program development, and
possibly as an IN, for the cosmic cube. The IBM PCs also use 8086/8087s,
and include a Pascal compiler that produces easily linked 8086 assembly
code. Upon first analysis, these IBM PCs appear to be an attractive
approach to allowing system and application programming for the cosmic cube
to be done in Pascal.

-P. 6 2., '1**.. .,. . . . ' . * .~* . - ' * . - .... . ,-.. . .. ... . c.. ........... ..... . . ... . .. . ..
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2.2.3 Designs for a Boolean 10-cube Homogeneous Machine

Several preliminary designs for a Boolean 10-cube machine have been
developed, stimulated by a commitment from Intel to contribute chips of
their manufacture and strong possibilities of funding, some already
committed, for the construction and programming of such a system. This 1024
processor system would be a direct evolution of cosmic cube, and source
program compatible with it.

Storage per node is to be increased from 128K bytes to 256K bytes,
expandable to 512K. Such a large amount of primary storage benefits greatly

4., from error correction rather than the simple parity detection used in cosmic
cube. Soft errors can be expected to occur at a rate of one per several
minutes in a system with 256M bytes of dynamic RAM, considerably less than
the running time of most programs. Error correction also greatly simplifies
the maintenance of such a large machine. Intel makes an error correction
chip that suits this machine well, and also makes it easy and attractive to
use a scheme we thought about using in cosmic cube: two processors per node,
one to run user programs and the other to handle communication. The design
will probably use an 80286/80287 for the task processor and an 80186 for the
communication processor.

This structure makes a very attractive homogeneous machine node, and solves
a number of problems we have in (1) allowing multiple users to share the
10--cube, and (2) overhead in context switching in the 8086. Since the

V communication operating system would reside almost entirely in the
communication processor, and the comnication processor would run no user
code, protection is easily achieved.

The most difficult part of this design is to find an efficient way to
' implement the communication channels. We are presently considering two

approaches. One is to use a number of ethernet controller chips as
channels, an approach that is overkill, but these are the only chips we can
find that are adapted to the task. To keep the size of the node within
reason, we may reduce the number of channels to 4 plus an optional spare for
corner or secondary storage communication, and revert to a cube connected

P cycle of 4 nodes that present 8 channels to be connected in an 8-cube.
Message communication performance of this connection plan is almost as good
as a Boolean 10-cube. The other possible approach, but which probably
contains too much risk, is to use the custom FIBT communication channel chip
discussed in Section 4.4. Design and performance verification of this chip
was recently completed, but there are many unknowns in putting this chip
into small scale production.

, * Plans to build a J-11 based 10-cube machine in collaboration with DEC are
currently held in suspense due to delays in the production and availability
of the J-11.

m'p.'.
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2.3 Mosaic Processor

Chris Lutz, Don Speck, Steve Rabin, Pete Hunter, Chuck Seitz

2.3.1 Overview

Design of the mosaic processor was completed in December 1982, and first
silicon (Figure 1) received 9 February 1983 functioned correctly to within
one minor layout error in the ports discovered by simulation after the chips
were sent to fabrication. Chips assembled at 4 micron feature size run at a
7 MHz clock rate. This 16-bit processor is only 1436 by 1440 lambda (without
the pad frame), about 1/8th of a 6 - square chip at 3 micron feature size.
Mosaic includes 4 bidirectional communication channels, 16 registers, all
common logical and add/sub instructions, bit and nibble shifts and rotates,
NZCV flags, refresh address generation, 8 addressing modes, and a very
efficient instruction set. This processor element is the basis of the
mosaic-mesh and mosaic-tree experiments outlined above.

Needless to say, there were many smiles to be seen here on 10 February 83.

2.3.2 Design and Layout

Logical design, microcode, and simulation of a new tree machine processor,
now named "mosaic," was completed by Chris Lutz between January and June
1982. The design has several unusual features. The clock cycle and
microcode cycle is also the primary storage cycle. A single instruction
execution may reference storage as many as 5 times, e.g. instruction,
immediate data (address), operand, write result, refresh cycle. The
instruction execution on this machine is pipelined, and instructions are
prefetched.

The osaic processor uses a two-phase clock driven directly onto the chip at
a voltage that is allowed to exceed Vdd. Most control signals are produced

by clock-and bootstrap drivers whose positive output voltage tracks that of
the primary clock from which it originates. However, the clock load
presented by the processor is only about 2 pf, much less than that of the
bonding pad and wires. We believe that this "hot clock" and clock-and
technique is extremely valuable, not only for achieving good performance and
layout density, but also for making the performance of the processor much
less dependent on the large variations in depletion threshold voltage
between MOSIS runs.

The processor was laid out and subjected to extensive verification efforts
between July and December 1982. The layout required approximately 12
person-months from 4 people, and consumed less then 100 CPU hours of
VAX11/780 time. The entire layout is expressed in 10,000 lines of Earl
code, a layout language with constraint solving. Critical timing paths were
checked with SPICE simulation, and predicted clock period (rate) for lambda
2 microns was 155 ns (6.5 MHz), limited by the rather conservative control

PLA.

As can be seen from Figure 1, the layout is extremely regular in floorplan,
but highly convoluted in some of the cell designs. This use of "Boston"
geometry, that Earl supports in several ways, is estimated by its advocates

.% %
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to have reduced the area of this layout by as much as 255 over Manhattan
geometry and perhaps 10% over geometry that permits 45 degree lines. The
artist responsible, for the most highly repeated and most round looking
sections of the design is Don Speck, a Caltech undergraduate. As can be
seen from the photomicrograph of Figure 2 of the upper left corner of the
control PLA, MOSIS does a very good job in scan converting this volumous and
strange CIF to msks.

2.3.3 Verification Efforts

Steve Rabin, another Caltech undergraduate, served as quality control
department in the final 3 months of the layout effort, and is most of all
responsible for first silicon being able to execute programs.

The tree machine processor was extensively simulated using the ternary
switch level simulator tOSSIM II [Schuster, Bryant 5033:TR:82]. Two means
were used to generate switch level network descriptions of the tree machine
processor: (1) Hand coding in a network description language from working
schematics, and (2) Raster extraction of layout artwork (CIF) using the
Terman/Baker algorithms CC N Baker and C Terman, "Tools for Verifying
Integrated Circuit Designs," Lambda 1980, 4th Qtr. pp. 22-30, [Hedges
private cor...].

Initial attempts at simulation prior to the completion of the layout were
performed using a circuit description hand coded from the most recent
schematics. The controller was represented as functional blocks, while the
datapath was simulated at the transistor level. Primary storage was also
represented at the functional level to allow simulated execution of
programs.

Once the layout of the datapath was complete, graph isomorphism was estab-
lished between the network descriptions and the extracted descriptions,
using a new program in the suite of MOSSIM programs called MOSDIF
[Schuster 83 in prep.]. Details of the full layout implementation, such as
the order of inputs to nand gates, the number of inverting stages in pad
amplifiers, parallel transistors, and the difficulty of keeping the hand
coded schematic up to date caused us to abandon it as soon as the layout was
complete, concentrating instead upon simulation of the description obtained
by extraction.

Design iterations consisted of layout, circuit extraction and simulation.
Several problems were found in the processor and in the layout that, while
minor and easy to fix, would have made later testing very unpleasant.
Although MOSSIM II proved to be remarkably free of bugs and quirks, not even
MOSSIM II emerged completely unscathed - the combination of the pseudo-unit
timing delay model and a sufficiently large decoder revealed an obscure bug
in the simulator's event list update. This bug was fixed quickly. The
authors and caretakers of the design tools we use were extremely helpful and
responsive to our needs.

The simulation process was the origin of a set of functional test programs 0
for mosaic. An new assembler was written in MAINSAIL. A small collection
of test programs were written in the prototype assembly language, and their
execution was simulated by MOSSIM II working from extracted layout and a

.. . .. .. . . . .. . . . .. . . ........ . .
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- functional block simulation of main memory. The execution of the test
programs revealed a few additional layout problems that were immediately
fixed. These programs were also used later to test the processor.

-Verification efforts used lots of computer time. CIT-VAX (VAX11/780 running
.' Unix) accounts chuck, speck, and stever managed together to use 185 hours of

* CPU time in December 1982, over 6 hours per day, most of which Was for
*extracting, plotting, and running MOSSIM.

2.3.4 Test Results

Two versions of mosaic with a pad frame wrapped around it, one assembled at
lambda a 2 microns and one at lambda = 2.5 microns, were sent to MOSIS on 6
January 1983 and returned on 9 February 1983, an excellent 34 day turnaround
time. The chip was tested in a simple test fixture by driving it with
clocks and a reset signal and allowing it to execute code from storage. We
knew it was going to work and didn't want to mess around with tedious
systematic testing. And they worked!

In subsequent weeks additional test programs have been coded resulting in
the discovery of two microcode problems in the prototype. Neither is
critical to the functioning of the processor. Test coverage is now regarded
as exhaustive.

- The "LSSD" scan path between the controller and the data-path has been of no
use in prototype testing. This omission is partially due to shortsighted-
ness in the scan path design (data path control signals are not static
during the period in which new data is scanned in). The storage interface

,. has been far more useful in verifying correct behavior of the processor. In
future implementations of this machine the key to processor design
verification testing will be the observability of the processor/memory
interface. The LSSD path may still prove to be useful for production
testing.

Because of the unusual circuit and layout structures, the advantages of

.' producing a high-yielding system part, and the desire to provide interesting
S.. reports to our friend Ms Mosis, testing of these prototype chips has been

extensive. We report for the sake of completeness some data that may not be
of general interest.

The initial tests were performed with the processors assembled at lambda =

2.5 microns.

All 8 processors worked correctly with a loop test program. (0: JUMP #O)

__ A more sophisticated test register test program (generate Fibonacci numbers,
EV. cycle them through all 16 registers, write result out to memory) worked

correctly on 5 of the 8 processor chips at clock frequencies between 1 MHz
and 4.6-5.0 MHz. One of the curious and still unsolved mysteries turned up
at this point, that these chips will NOT work correctly at clock rates much
below 1 MHz! Imagine how much trouble we would have been in if we had tried

@7 to test them at low speed!

Then some speed tests were performed with code that executed the worst-case
ALU operation (adding 1 and -1, then looking at the V flag). Results:

-."~
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Chip 0 Maximum Speed Maximum Phi2 Measurements done
#1 5.2 MHz 0.3us
#7 5.2 MHz 0.3us
#8 5.2 MHz 0.3 s1
#2 4.8 MHz 0.4U3
#6 4.6 MHz 0.5Us Ri bad on this chip
#4 4.5 MHz 0.6s.

These tests also included experimenting with the length of phl and ph2,
keeping cycle time constant, and showed that phl could be lengthened or
shortened over a 1O-15ns range without affecting the maximum speed. This
characteristic of the length of the clock cycle being more important than
the duty cycle implied that the controller is the limiting factor, because
it uses the full 'lock period, while the ALU is precharged on ph2 and
operates on phl.

At this point some effort was expended in looking through a microscope
trying to find the reason for 3 of the 8 processors having faults. Three of
the processors failed at least one diagnostic program, all in different
Ways.

One chip had shown problems in reading and writing register R1. The results
were very speed-dependent, yielding all l's at high speeds and hex 1800 at
low speeds. After determining which register was R1 (the ninth from the
left), we examined the offending bits and found that the poly had bridged.
This shorted two pullups to neighboring pullups and to the read and write
lines. The bad area was about 60um across.

Another chip produced hex FCTF on the data lines on the register
diagnostics. The microscope revealed that most of the poly was missing in
ALU slice 8, and some in slices 7 and 9. The area of devastation was about
14 0um across. The bug also produced opens in bus wires 8 and 9 where they
pass through the ALU on poly. This observation easily explains this chip's
problem.

The third chip failed to clear its PC on reset. It still did run 0: jump 0.
We were unable to find the cause. There was a large piece of foreign matter
lying on the reset code in the controller. Blowing on the chip made it go
away. We don't think that was the problem.

There was a design rule violation, a one lambda poly-poly spacing discovered
in the central routing cell after the chip was sent to fabrication.
Checking with the microscope showed that with the chips assembled at lambda
x 2 microns, this mistake was close to a short, and so the early testing was
all done with lambda = 2.5 micron chips which were all examined and showed
no shorts. Next we turned to testing the lambda = 2 micron chips, which
turned out not to have shorts after all. Speed tests on six of the 4um
chips:

- - " . "",-,..
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Chip I Maximum speed Maximum Phi2 time (Chips tested with
no warm-up time)

12 7.3 MHz 0.2us
9 7.0 MHz 0.2Us D13 bond wire broken
10 6.9 MHz 0.3s -
11 6.9 MHz 0.21s
14 6.8 MHz 0.2s
13 6.7 MHz 0.2Us
15 --s Fails to reset
16 ? ? Cannot locate this chip.

Power supply current 120-130 mA (Vdd = 5 v)
Power 625 mW (about half pad drivers)
Cycle time 140-150 ns (Vdd z 5 v, and 8 volt clocks)
Maximum Phi2 time 200-300 ns.

These speeds were amazingly close to the figures calculated and predicted by
SPICE simulation.

There were also several experiments done in varying the voltage of the "hot
clocks" and Vdd. The speeds reported are at the nominal voltages of 8 and
5, respectively, but the hot clock discipline includes so much tolerance
that the chip still functions at about 70% of nominal speed and less than
50% power at a clock voltage of 5 volts and Vdd of only 3 volts.

We are still uncertain why the processor fails when ph2 is longer than a few
hundred nanoseconds. Our guess is that it is capacitive coupling to a
control line. Some of the clock-and drivers leave their outputs floating
low when deselected. Perhaps it's in the registers or (cringe) the bus.

2.3.5 Improvements and Continuing Efforts

As previously reported, we are planning to replace the present static
control PLA with a precharge design that will increase speed and reduce
power, but was considered a potential risk in this first implementation. We
have decided to couple this change with other work currently in progress to
enhance the scalability of the layout, which is currently correct only at
4-5 micron feature size. The main problems with scaling the artwork to 2-3
micron feature size are (1) power and voltage drop considerations in the
controller, which will be corrected by using the precharge design, and (2)
some routing and bonding problems in the pad frame.

A version 2 microcode has been written and simulated to be a better fit for
the folding possibilities offered by the precharge version of the control
PLA. This change in the control PLA also makes it desirable to change some
of the routing plan between the controller and datapath, saving about 70

lambda in the vertical dimension. The assembler is being revised to
assemble code for the version 2 microcode. We expect to accomplish and
iterate these improvements over the summer while developing the storage
element.

We expect the result of these improvements to be a small decrease in area
and an increase in speed so that processors fabricated at 3 micron feature
size will operate sufficiently comfortably in excess of 10 MHz that we can
use a 10 MHz system clock for mosaic-mesh and mosaic-tree.
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2.3.6 Floating Point Routines

Many of the applications planned for mosaic are heavy on floating point
computations. Although the processor does not support floating point
directly in either hardware or microcode (to do so would vastly increase the
complexity of the processor), the instruction set lends itself well to
software floating-point. Chris Lutz has written an elegant floating point
package for the processor.

Floating-point quantities are represented in three words: two words (32
bits) of normalized mantissa, and one word containing a mantissa sign bit

and 15 bits of two's complement exponent. Thus a range of greater than 10
raised to + 5000 can be represented.

The floating point package contains add, subtract, multiply, and divide
subroutines that yield 32-bit rounded results in all cases that the result
is representable. Underflow and overflow can be trapped by the user. The

- package is 200 words long. Typical execution times (in processor
microcycles and in us assuming a 10 MHz clock) are:

Add and subtract: 180 microcycles; 18 Us
Multiply: 870 microcycles; 8T us
Divide: 960 microcycles; 96 Us.

The package can be modified to handle 48-bit mantissas (4 words per
floating-point quantity) by insertion of 28 additional words. Execution
times will then be increased by 10% for add and subtract, and by 70% for
multiply and divide.

2.3.7 Storage Element

The dynamic RAM test chip designs to provide on-chip storage for mosaic have
been returned from MOSIS, but have a nearly fatal design error in the
decoder. Nevertheless, we have enough experience through student designs

. with several compact 3 transistor dynamic RAM cells, and through test
structures with the clock-and drivers, to proceed with a storage element
that employs bootstrap address line drivers. The current design adds a phlx
clock at the end of the phl period.

Meanwhile, partly from experience with the cosmic cube, we have become
concerned about the soft error consequences of building systems with very
large amounts of dynamic storage. Very large ensembles of mosaic processors
with on-chip memory may require error correction in order that the mean time
between failure be more than a few minutes. Whether error correction is
needed depends on the number of processors in the ensemble, the amount of

memory per processor, and failure statistics in the 3-transistor dynamic RAM
cell we are Using.

Since all commercial dynamic memory currently uses 1-transistor cells,
statistics must be obtained by fabricating and testing experimental versions
of the memory. Several properties of the mosaic storage element make it
less likely that error correction will ever be needed: the 3-transistor cell
has little diffusion area on the storage node, making it difficult for
photoelectrons from alpha radiation to discharge the node; the 3-transistor

.........•• ,.-..-.-.................,......,........................ . ... .. ...I ~~~~~~~~~..'..:, .. "..-,..... ... .... ...... ,.....,.,..,..,.......,.....,,., . .
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*. cell has a much higher noise margin than a 1-transistor cell since there are
no sense amps and sharing of large read line capacitance with small cell
capacitance; and the high refresh rate guaranteed by the processor (at least
one of every 7 microcycles is a refresh cycle) reduces alpha susceptibility.

In the event that error correction is needed, however, Chris Lutz has been
investigating some of the possibilities. The error correction problem in
mosaic mesh or mosaic tree is different from that in current commercial
computers in several ways: (1) The storage is synchronous with the processor
and must be very fast (10 MHz). Since error correction is in series with
memory access, it must be comparably fast in order not to slow the entire
system down. (2) The error correction is entirely on-chip, so LSI MOS
design techniques (taking into account the large cost of communication and
small cost of regular structures) apply. (3) Correction of hard errors is
useful: to prevent immediate system failure on hard error; and to increase
chip yield at the expense of soft error correction capability. If both
these goals are sacrificed, then properties applying only to soft errors can
be exploited. In particular, soft errors in the mosaic storage may be
confined almost exclusively to discharging of storage nodes due to alpha
radiation. There is no mechanism for erroneously charging a storage node.
The error correcting code can take this asymmetry into account.

Codes that need correct only single errors of 1->O transitions are at best

only one bit shorter than the (reduced) Hamming code. Furthermore, the
known examples of these codes are far more analytically and computationally
intractible than the Hamming code, with two exceptions: The code with only
the two codewords [0,0] and [1,11 is trivial to encode and decode. (To
decode, simply find the logical OR of the bits.) Its overhead of a factor
or two in storage requirements is excessive, however, unless both bits can
be efficiently built into one storage cell, and in such a way that an alpha
particle cannot discharge both bits. The other exception is to simplify any
syndrome decoding scheme (e.g. any linear code) by forming not the
exolusive-OR of the error pattern with the word to be corrected, but rather
simply the OR. OR can be performed more quickly, in less space, and with
less power than exclusive-OR..° 0

Most commercial computers correct main storage with a reduced Hamming code
(a perfect, single-error correcting code which is truncated to give the the
word size of the particular machine). Strong possibilities for the mosaic
storage element are the (21,16), the (38,32), and the (71,64) reduced
Hamming codes. (The first number in parentheses is the length of the
codeword, the second is the number of data bits represented.) The Hamming

,* code suffers, however, from the need to compute the many-input exclusive-OR
of approximately half of the codeword bits, roughly evenly distributed
across the word. This computation yields the syndrome (a unique indication
of the error location) which must be distributed to comparitors at every
codeword bit. Although not expensive in hardware, this is a very lengthy

,. computation.

A convolutional code can solve the problems of many-input exclusive-ORs and

long communications paths. A convolutional code is a linear code in which a
corrected data bit is a function of only the codeword bits in some neighbor-
hood around it. For example, a code exists which requires 1 check bit for
every 3 data bits, and computation of the syndrome requires exclusive-ORing

% %
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only 7 bits out of a neighborhood of 13 codeword bits. Each syndrome bit is
used only in its neighborhood of 12 data bits. Arbitrary word lengths can
be obtained simply by repeating a cell representing a block of 3 data bits.

2.3.8 Mosaic Mesh and Mosaic Tree

As sufficient numbers of prototype mosaic chips are received from MOSIS, we
will be assembling a number of prototype mosaic tree and mosaic mesh
machines using commercial (InMOS 4K x 4) storage chips.

*Work is also underway in the logistics of wafer testing mosaic mesh and
mosaic tree elements with on-chip storage. A wafer stepper probe station is
set up and is being interfaced to our computers.

2.4 Super Mesh

Wen-king Su, Chuck Seitz

2.4.1 Super Mesh (Seitz)

Guided largely by seeing how the physics people have been programming
regular applications on the cosmic cube, we have recently started working on
the design of an SIND machine of quite small grain size, about 1 MSL. It
seemed very wasteful in CosMIc cube that the same program was loaded into
all of the nodes of this MIMD machine, even though the execution temporarily
follows different branches in different machines. We have always
rationalized this duplication of code as necessary in face of the cost of
broadcasting control. However, if an efficient broadcasting mechanism could
be devised, an SIND machine of quite small node size could start to reach
into the range of a factor of 1000 in cost/performance over conventional
uniprocessors.

An answer to this dilemma is serialisM. As was pointed out many years ago
in studies of the Illiac IV, serial nodes in parallel computers are
inherently efficient. Where n-bit parallel arithmetic in time T requires n
full adders of carry delay T/n, n-bit serial arithmetic in time nT requires
only 1 full addjr with delay T. The ratio in power and cost between these
structures is n , while the ratio in performance is only n. Illiac would
have been a more cos effective machine with 64 times as many nodes each 64
times slower, and 64 times cheaper. Slower serial nodes also simplify the
instruction issuing computer and the broadcast of control, indeed allow and
encourage this broadcast to occur serially. The physical structure of the
clock and microinstruction distribution require that the interconnection
plan be a 1-, 2-, or 3-dimensional mesh.

A VLSI engine that follows from this reasoning, dubbed super mesh (SM),

actually resembles a computational or systolic array, except that instead of
the algorithm being built into the node, the node operates on the contents
of its registers in response to the instruction sequence broadcast through
the ensemble. We expect that the existing body of algorithms developed for
computational arrays, and the programmability of this implementation, makes
super mesh a good approach toward the engineering of computational arrays.

%.
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A strawman design of the node includes registers for 16 floating point
numbers, and a carry-save technique for the mantissa multiplication.
Because of the uniformly short paths through combinational logic, such a
machine should be able to operate at a bit rate in excess of 20 MHz, which
for a 32-bit mantissa translates into about 5 microseconds per floating
point multiply.

One can do an analysis for optimal returns in speed for area in carry save
multiply algorithms with m adder elements for n bit words. The analysis
suggests that man is optimal, but the function is curious, and of course in
the continuous approximation has lots of discontinuities. For m<n the area
time product is about constant to within non-integral ratios of n/. For
m>n you have the curious situation that for kn < m z< (k.l)n the clock
period is (k.l) times what it is for man, so for example where m=2n the
number of clock periods required to do the multiply is reduced to half, the
period is twice as large, so there is obviously no winning even in absolute
speed (except for a 2nd order term) along this m>n route. The reason we
regard man as optimal rather than some m<n is that the multiplier is only a
fraction of the area of the system, and so making it twice as big (using
actual numbers) from about 0.1 to 0.2 MSL and twice as fast does not greatly
impact the total area, about 1 MSL, required.

This strawman machine turns out to have too much arithmetic performance and
too few registers to be a good fit to real problems. It very well reveals a
problem inherent in the computational array model, in that for more than

-. one-dimensional arrays, the time complexity of serial loading exceeds that
of computing. Although it may seem counterintuitive, a realistic design
w will have to include much more storage relative to the arithmetic
capability, in effect to share the arithmetic capability amongst more
operands, and to permit a broader class of applications. Since registers on
MOSIS chips are not very cost effective simply as storage, we are now
looking at Ways to back up supermesh with a large secondary RAM store using
high-density comercial RAM chips.

Although supermesh is still in the early stages of simulation and design, we
can project conservatively that a small system of 64 supermesh chips (1024
nodes) plus 256 storage chips, will achieve present supercomputer perform-
ance for "systolic" problems in which the number of iterations is large
enough to outweigh the loading time.

.3..7
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3. Concurrent Computation

3.1 Concurrent Algorithms

Lennart Johnsson

During the past six months a few algorithms for the preconditioned conjugate
gradient method have been devised for binary trees and Boolean n-cubes.
Preconditioning adds a O(N) time complexity term to the conjugate gradient
method for full matrices. For sparse matrices either the space or the time
complexity, or both can be improved. Preconditioning implies that linear
recurranCes have to be solved in each step of the conjugate gradient method.
With matrices in band form the devised algorithms still run in O(N) time,
but with matrices in bordered block diagonal form the time complexity can be
reduced to 0(logN M) where M is the block size, [Johnsson 831.

A new course on concurrent algorithms was offered during the winter quarter.
The focus in the course is on highly concurrent algorithms, their
communication needs, distributed data structures, and the mapping of
algorithms onto ensembles of sparsely interconnected processors.

[Johnsson 83] S.L. Johnsson, "Highly concurrent algorithms for solving
linear systems of equations". Presented at "Elliptic Problem Solvers",
Monterey, CA. January 1983. To appear in Elliptic Problem Solvers II,
Academic Press.

3.2 Tree Machine Software

Pey-yun Peggy Li, Lennart Johnsson

3.2.1 Loader

Three improved downloading algorithms have been analyzed, implemented and
*' tested on the tree machine simulator. These algorithms speed up the time to

load the node types from O(N) to at best 0(log N). For a logical tree with
*' totally N nodes of fanout f, the algorithm that takes the description of the

logical tree as input achieves the best performance, 0(log N) in all cases.
The tree processors do the conversion from a fanout f tree to a binary tree.
The other two algorithms take the description of the converted binary tree
as input have a worst case performance O(sqrt(N)/f) and O(N(1/log f)),
[Li, Johnsson 83J

3.2.2 Mapping of Logic Trees onto Fixed Binary Trees

1. Balancing a binary tree: three algorithms, AVL height balancing,
bottom-up balancing and an in-tree top-down algorithm have been analyzed.
The algorithm which has to be implemented in the host is not desirable,
because it always increases the length of the node type sequence which will
be fed into the tree at downloading time. The in-tree top-down algorithm
has the best performance in terms of the total increase of the communication
cost. But, the algorithm complexity is too high to be satisfactory, namely,
O(N).

. '.-
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2. Timesharing of nodes: A simple mapping algorithm has been designed to map

a bigger binary tree onto a smaller tree machine. Each tree machine
processor will be timeshared by more than one node in the problem tree. The
adjacency relation, i.e. father-son relation, will be preserved after
mapping. In other words, the adjacent nodes in the converted binary tree
will be mapped either onto one processor or two connected processors in the
tree machine. Hence, the mapping algorithm never increases the
communication path.

3.2.3 Scheduler

A scheduler is being implemented in the tree machine assembly language. The
scheduler keeps track of the states of processes, interprets the incoming
and outgoing mssages and makes corresponding state transitions and context
switches. The most important task of the scheduler is to handle the input
and output interrupts, then place the message into the proper port of the
proper process and evoke the process which has been suspended on waiting forthat message,.i

[Li, Johnsson 83J Peggy Li and Lennart Johnsson, "The Tree Machine,
Strategies For Reducing the Program Loading Time", Computer Science,
Caltech, February 1983

3.3 Residue Arithmetic

Chao-lin Chiang, Lennart Johnsson

The computation speed of arithmetic based on the residue number system is
potentially much greater than the speed using the binary number system.
There is no long carry chain in the residue number system.

The maximum speed-up of the multiplication of two N bit integers is
O(N/logN). This limit can be reached only if the individual residue
arithmetic units are implemented efficiently. Traditionally, table look-up
methods are used to implement a residue arithmetic unit. Table look-up
methods are practically limited to computations with numbers represented by
less than 5 bits.

Three different types of residue multipliers are being designed: simple
table look-up, a combination of tables and adders, and an array of adders.
These multipliers are now being implemented in NMOS technology with 4 micron
feature size. Simulation results indicates that for a number represented by
less than 4 bits the table look-up method is preferable. The second
alternative offers advantages in the range 5 to 6 bits, and the third

alternative is competitive when more than 6 bits are required. These
results are subject to change with the technology.

As MOS technology is scaled down, the wire delay will dominate in the PLA or
ROM structures (due to the long polysilicon wires). Hence, the methods that
use tables do not scale well. The third alternative (array adder) will be
increasingly competitive in lower bit ranges.

-=
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With proper choice of bases, one can construct a residue number system of
required range. The following speed-up figures are derived for residue
arithmetic compared to binary arithmetic using a combinational multiplier.

BASE RANGE(bit=N) SPEED-UP RATIO
(combinational multiplier)

5,7,9,11,13,16 20 7.5

5,7,9,11,13 35 7.5
32,17,31,29

7,11,13, 47 10.0
32,17,31,29
27,25,23,19

11,13 90 10.6
17,19,23,25,27
19,31
37,41,43.47.53
59,61,49,64

(N/logN)

*3.4 "The Mathematics of the Black Box" or, a General Proof Rule for
"* Procedures

" Alain Martin

In all (hardware or software) design disciplines, the concept of "black box"
. plays a crucial role: after a component has been designed for achieving a
. certain net-effect, it can be replicated and used without knowing its
"* internal structure, but knowing only what it does.

The programming concept of "procedure" is a good formalism to study this
problem in general. There are two main issues. The first one is the
"parameter mechanism" by which an instance of a black box is linked to a
certain environment. The second one is a partial specification issue. A
procedure is only a partial semantic function: it has been designed to
establish a certain post condition, but unlike other programming constructs,
it is not known how it establishes any postcondition. In [Martin 832, a
proof rule for using procedure is proposed that we believe to be more
general and easier to use than other existing ones. Assuming that it has
been proved that the body of a procedure establishes a certain postcondition
I for a certain precondition J, the rule permitting to determine under which
conditions a certain procedure call establishes the postcondition E is based
on finding in adaptation A such that A A I => E'. (E' is derived from E by
some substitution of parameter variables.)

(Martin 83] Martin, Alain J. A general proof rule for procedures in
predicate transformer semantics. Caltech techical report 5075:TR:83. Feb.

1983. (submitted for publication)
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3.5 FFTs and Posets on the Cosmic Cube

Michael Newton, Chuck Seitz

The hypercube interconnection plan makes the cosmic cube particularly nice
for certain forms of computation.

The FFT is one example. The butterfly operations involved in computing the
Fast Fourier Transform are essentially the same pattern as the inter-
connection pattern on a hypercube. Thus, when data is already present in
the correct nodes in the Hypercube, it is possible to run a FFT in log(n)
time, [Newton, 5057:DF:82).

Poset problems are another example. Consider a graph G, with vertices V
(V1, V2, V3, . . . Vn) and edges E = (VlV2, V1V3, ...V1Vn, V2V3 .
Vn-lVn) and a function f:E->N, N being the natural numbers. We wish to form
a closed path connecting all the vertices once and only once, e.g,, create a
path VilVi2Vi3 .... Vin such that sum of f(i) on the path is minimal/maximal.
This problem, usually referred to as the Traveling Salesman Problem, gows
exponentially in difficulty with the length of the input string (roughly the
number of cities), and is of a class of problems generally referred to as NP
complete. This problem can also be thought of as the minimization of the
cost function of a full sequence of the non-commutative elements of V. The
elements, however, are associative, so partial results (of the form Vi,j
Vi,j.l...Vi,j.k) are useful in more than one calculation. These partial
results can be generated in the form of a Complete Boolean Partially Ordered
Set (poset). As shown in [Newton, 5037:DF:833, posets of this form are
isomorphic to a Boolean Hypercube. Using this isomorphism it is possible to
write algorithms to solve this and similar problems of size smaller than the
dimension of the machine in n time. Even for problems larger than the size
of the machine the worst part of the exponential growth in time is removed.

3.6 Circuit Simulation on the Cosmic Cube

Sven Mattison, Lennart Johnsson, Chuck Seitz

We have started to investigate the possibility of writing a circuit

simulator similar to SPICE for the cosmic cube, for two reasons. One reason
is that SPICE uses lots of time on our computers as well as on many people's
supercomputers, and such a program would provide a more economical way to
doing these simulations. The second reason is that circuit simulation is an
excellent paradigm of problems in which the communication graph, while
fixed, is not so regular as in the problems done by our collaborators in the
sciences at Caltech.

There are massive concurrencies available in the model evaluation phase of
such a circuit simulator, and we estimate that a concurrent approach can
reduce this time from about 80% to less than 20% of the running time. thus
perhaps allowing more elaborate models to be used if desired. The solution
of the resulting linear system benefits from recent results in solving
sparse matrix equations, [Johnsson, 4087:DF:80, 5040:TR:821. The efficiency
of this computation depends on the way in which the circuit variables are

• 4'mapped into physical processors. An efficient mapping need be done only
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". once, and approaches based on annealing and on locality in extracted
networks are both being considered. A prototype program is Pascal, written
to extend easily to a concurrent system, has been written to experiment with
the linear system solution and time step techniques.

.4..
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4. VLSI Design

4.1 A Self-timed Circuit for Distributed Mutual Exclusion

Alain Martin, Mike Schuster

As an introduction to the study of self-timed design methods, a self-timed
circuit for mutual exclusion has been designed. If N independent processes
can be simultaneously a candidate for the exclusive access of a shared

resource, the mutual exclusion circuit sees to it that the simultaneous
candidates are granted the resource in some order. Using a solution
proposed in [Martin 82], two approaches have been taken. In the first one,
the circuit is directly derived from the program. In the second one, based
on the method proposed in [Snepscheut 83], a finite state machine is first
derived from the program and the circuit is an implementation of the finite
state machine. The two approaches lead to quite different circuits.

EMartin 82) Martin, Alain J. Distributed Mutual Exclusion Algorithms,
Caltech technical report 5047:TR:82. Sept. 1982.

[Snepscheut 83] V.D. Snepscheut, Jan. "Deriving Circuits from Programs."
Proc. Third Caltech Conf. on VLSI, March 1983

4.2 From Circuit to Layout - Another Approach

Tak-Kwong Ng, Lennart Johnsson

Many "chip" layouts may have identical logical behavior. It is this many-
to-one mapping from layout to logic which makes the task of automatic
generation of *efficient" layout very difficult. In order to generate the
"best" layout for a logic design one need to evaluate every possible layout.
This certainly is a large combinatorial problem. To reduce the problem com-
plexity one may partition all possible layouts with an equivalent relation.
The choice of equivalent relation depends on the evaluation criterion.

One possible evaluation criterion is the number of contacts in the layout.

The equivalent relation for this evaluation criterion is defined. The
development of an algorithm which computes the minimum number of contacts of
any block in the partition is in progress. The development of an efficient
searching algorithm for all blocks with minimum number of contacts is also
in progress.

The "cross-over" problem is the problem of finding a layout for implementing
a given circuit with minimum number of contacts. The complexity of this
"cross-over" problem is expected to be like the graph coloring problem.
There is no known polynomial bound algorithm for solving the graph coloring
problem except for the one or two coloring cases. For the same reason a
polynomial bound algorithm for solving the "cross-over" problem may not be
found except for the zero cross-over case. It is our belief that efficient

Saalgorithms based on the branch-and-bound technique can be found for most
circuits.

Other evaluation criteria under consideration are the dimensions of the
minimum bounding box of a layout and the maximum wire length.

2b.
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4.3 FBRT Chip

Charles Ng, Chuck Seitz

A fifo buffered receiver transmitter (FBRT) [Ng, 5055:TR:82] one-to-one
communication chip for future experimental homogeneous machines was tested
in March 83 and found to work correctly at a 6 MHz clock rate. The first
iteration of this design tested in December 82 was only partially functional
due to a ratio error.

This unusual chip employs a pair of asynchronous FIFOs, one for each
direction, to provide packet storage and speed matching between a micro-
processor interface on one side and a communication channel interface on the
other side. The communication channel requires only one wire in each
direction. Packets are sent at a bit rate determined by a clock that is
distributed throughout the system, or can be generated from a crystal
independently. The clock serves only as a frequency reference; its phase is
arbitrary. Acknowledgements that confirm that a packet was received and
there is now room for a new packet are special packets, interspersed with
but with higher priority than data packets, on the opposite direction wire
for the channel.

This design is highly parameterized, including word format and packet
length, and several channels can be included on a single chip. It would be
very nice to be able to use this chip in a future cosmic cube class of
machine if the logistic problems of putting it into small scale production
could be solved. Alternatively, this design may be turned over to DEC for
them to produce for J-11 based homogeneous machines.

4.4 Hierarchical Router

John Y. Ngai, Chuck Seitz

Since the last report, work has been focused primarily on the following:

(1) A revision of the system's input specifications to include features that
allow easier user interactive control.

(2) An modification of the routing model to handle gridless channel routing.

(3) An extension of the channel routing algorithm to handle two-dimensional
routing, ie, pins on all four sides of a channel.

(4) Fine tuning of the routing heuristics involved in getting better layout.

(5) Implementation and testing of the system.

The prototype implementation is near completion, and we expect to run large
real tests using it soon.
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4.5 SOS Technology and Libraries

Chuck Seitz, Sven Mattison

Using primarily students in the VLSI Design Laboratory course, efforts to
-'. develop our design capability in CMOS/SOS are continuing well. The first

MOSIS CMOS/SOS run done in November 82 included over 40 CMOS/SOS projects.
with all but 7 students meeting this early fabrication deadline. About half
of the students elected to do their second project in CMOS/SOS instead of
nHOS, particularly those with prior industrial experience, who pointed out
that almost all new designs done in their companies were in CMOS.

Sven Mattison has developed and is continuing to refine a set of SPICE
parameters for CMOS/SOS that seem to produce accurate simulations.

Another project carried out in the winter quarter by the class is an
extensive library of nMOS and CMOS/SOS cells written in Earl, and often very
well parameterized. This cell library is now being distributed along with
Earl.

.m.
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